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Abstract 
More than forty million people in the United States currently use onsite wastewater disposal or decentralized 
sewerage collection and treatment that rely on septic tanks for primary treatment.  There is a good reason why, 
in this age of advanced technology, the septic tank is still in use.  It works.  More than 45% of ultimate treatment 
can be accomplished in the septic tank.  Advanced onsite and effluent sewer technologies have established their 
environmental importance by bringing highly reliable, affordable and permanent wastewater treatment to users 
worldwide.  In short, passive—energy free—septic tanks provide the most cost efficient form of primary 
treatment available for nonindustrial sewage. 
 
Decentralized sewers and onsite alternatives have advanced us to a new era of wastewater treatment and 
management where designers must be able to rely on the many essential components of the system.  System 
components must be designed and constructed with the same permanency and quality expected of any long-
term option.  Because the septic tank is an essential ingredient to the success of these systems, a new generation 
of structurally-sound, watertight septic tanks is evolving. 
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The Septic Tank 
The septic tank is an enclosed receptacle designed to collect wastewater, segregate settleable and floatable 
solids (sludge and scum), accumulate, consolidate and store solids, digest organic matter and discharge treated 
effluent.  Currently more than one-third of the nation’s wastewater treatment is provided by septic tank systems.  
The septic tank may be the single most important component used in all onsite treatment and collection 
alternatives.   
 
Usage 
The most common usage is in rural residential applications.  Besides its role in standard subsurface soil 
absorption systems, the pre-treatment provided by the septic tank is equally important in ensuring the success of 
other secondary treatment alternatives such as constructed wetlands, ponds, intermittent and recirculating sand 
filters, peat filters, mound systems, synthetic filters or membrane systems, up-flow filters, pressure distribution 
systems, and nitrogen reduction systems.  In addition, septic tank pre- 
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treatment often precedes packaged aerobic treatment processes (see Figure 1).  Multiple tanks are often used 
in parallel or series configurations when greater treatment, storage or surge capacity is necessary. 
 
The septic tank is also a major component in pressure and variable grade effluent sewer collection alternatives 
(STEP and STEG systems).  The reason is simple: the primary-treated effluent discharged from the septic tank 
is mild, consistent, easy to convey and easily treated by either aerobic or anaerobic secondary processes.  
 
In this age of advanced technology, there is a good reason why the septic tank is still in use; it works.  
Passive—energy free—septic tanks provide the most cost efficient method of primary treatment available for 
nonindustrial sewage; BOD (biochemical oxygen demand) removals of  greater than 65 percent and TSS (total 
suspended solids) removals of greater than 70 percent are easily accomplished (Bitton, 1994). 
 

 
 
• Intermittent Sand Filter 
• Recirculating Sand Filter 
• Mounds 
• Peat Filters 
• Wetlands 
• Soil Absorption 
• Pressure Drainfields 
• Aerobic Treatment 
• Effluent Sewers 
 
 

 
Figure 1:  Typical applications that require septic tank pre-treatment. 

 
Unfortunately, the septic tank is often the most disregarded component in the system.  The performance and 
success of a properly sized tank relies on its structurally-adequate, watertight design and construction.  If these 
simple criteria are not met, infiltration or exfiltration will fix the fate of the system. 
 
Septic Tank Biology 
Septic tanks are passive low-rate anaerobic digesters, with their own ecosystem, in which facultative and 
anaerobic organisms perform complex biochemical processes.  The tank operates as a plug-flow type of reactor 
(fluid and particles enter and exit the tank in progressive sequence), so there is usually no mixing  
or heating, particles ascend or descend and stratification develops.  Effluent quality suffers when this 
stratification doesn’t develop.  The environment within the tank’s clear zone is generally anoxic, or inadequate in 
oxygen, while sites within the sludge and scum layers may be completely free of oxygen, or anaerobic.   
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The inflowing wastewater directed into the clear zone (just beneath the scum layer) by the inlet fixture 
normally contains high levels of dissolved oxygen.  The microbial population, however, rapidly depletes the 
dissolved oxygen as the flow disperses in the tank and moves towards the outlet.  The bacteria found in 
residential wastewater are enteric, the same as those found in the gut (Ziebell et al. 1974).  These organisms are 
primarily heterotrophic bacteria which oxidize and solubilize organic matter.  Facultative microbes (organisms 
that can function in either aerobic or anaerobic conditions) solubilize complex organic material to volatile 
organic acids, while strict anaerobes ferment the volatile organic acids to gases (methane, carbon dioxide, 
hydrogen sulfide, etc.).  The microbes use the solubilized nutrients in the wastewater for cell growth and 
energy.  The microbes are enteric, therefore, natural habitants of the wastewater, but it takes years to develop 
volatile organic acid and metabolite concentrations sufficient for colonization of methane formers and optimum 
digestion.  Their population, growth and effectiveness are dependent on the characteristics of the wastewater 
(e.g., temperature, organic load, inorganic trash, toxic chemicals or cleaners, excessive fats, oils, grease, 
detergents, high hydraulic loads, etc.) as well as the sizing and design features of the tank.  Consequently, a 
tank must be adequately sized for the occupancy usage in order to ensure a long-term quiescent environment for 
the organisms to colonize.  When long-term storage is allowed, the effectiveness of digestion within the layers of 
stored volatile solids can be as great as 80 percent (Metcalf and Eddy, Inc., 1972), and the microbial 
population (biomass) required to accomplish the feat may range from one-fifth to only one-twentieth of that 
generated in an equivalent aerobic treatment process (Bitton, 1994). 
 
The dominant bacterial groups measured in the septic tanks by Ziebell et al. in 1974, were total and fecal 
coliform, fecal streptococci, lactic acid bacteria, anaerobes, and others.  The total bacteria population can range 
up to 230,000,000 per ml (Tyler et al. 1978).  Taber (1976) divided the bacteria into two groups, separating 
the methanogenic bacteria, or methane formers, from the non-methanogenic bacteria.  Following are some of 
the bacteria identified in each group:   
 
The non-methanogenic bacteria include: 
Actimomyes, Alcaligenes viscolatis, A. faecalis, Bacillus, Bacteroides, Bifido bacterium, Branhamella 
catarrhalis, Clostridium, Corynebacterium, Desulfovibrio desulfuricans, E. coli, Eubacterium, Euterobacter 
atrotenes, Fusobacterium, Lactobacillus, Leptospira biflexa, Microccus varians, Micrococcus lateus, 
Peptococcus, Pseudomanos reptilivora, Ramibacterium, Spirillum, Veillonella, and Vibrio 

 
The methanogenic bacteria include: 
Methano bacterium, Methanobacterium formicicum, Methanobacterium ruminatum, Methanospirillum sp., and 
Methanoccus vanneilli. 
 
The digestion that takes place in the tank is performed predominately by bacteria. The most common bacteria 
shapes are spheres (coccus), rods (bacillus) and spirals (spirillum).  These shapes can be observed as 
individual cells, or they may be seen grouped or linked together.  Each organism is  
encapsulated by a slime layer of extracellular enzymes.  These extracellular enzymes hydrolyze organic material 
by adding water to the organic molecules, reducing them to simple soluble organic compounds small enough to 
be absorbed through the cell wall.  Inside the cell, intracellular enzymes further metabolize and oxidize the 
volatile organic molecules creating the energy required for cell growth. 
Enzymes are complex proteins and can be precipitated, or have their enzyme reactive points tied up, by  
excessive amounts of salts and heavy metals.  Either of these contaminants will inhibit the ability of the microbes 
to adequately produce their soluble organic nutrition, in effect, retarding the tank’s performance.  Taking 
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precautions to reduce excessive disposal of household products containing large concentrations of zinc, copper, 
calcium, magnesium, iron, ammonium sulfate, sodium sulfate, sodium chlorides, etc., is an important first step in 
assuring natural biochemical processes.  Normal or conservative residential uses of salts, bleaches and 
detergents, however, are not detrimental to the microbial population.   
 
Performance 
As the wastewater passes through the tank, its characteristics change and different bacterial cultures 
predominate as the bacteria break down complex proteins, carbohydrates, and fats.  An assortment of typical 
wastewater characteristics is shown in the following tables.  The values shown in Table 1 are averages for 
wastewater entering the tank (influent).  
 
 
 Table 1:  Characteristics of Raw Domestic Sewage   
 Source Flow BOD5 TSS Grease pH 
  L(gal)/capita/day mg/l mg/l mg/l   
 Watson et al-Home 1 295 (78) 542 363 95 8 
 Watson et al-Home 2 250 (66) 284 293 33 8 
 Watson et al-Home 3 91 (24) 479 473 66 8.3 
 Watson et al-Home 1 269 (71) 518 478 134 7.6 
 Watson et al-Home 2 193 (51) 356 360 41 8.2  
 Watson et al-Home 3 110 (29) 598 602 92 8.4 
 Kreissl 242 (64) 435 380 65  
 Kreissl  490 480 89 
 Lawrence-Home 1 117 (31) 241 200 21 7.5 
 Lawrence-Home 2 185 (49) 146 126 16 7.2 
 Otis et al.  233 269  
 U. Wisconsin 121 (32) 415 296 122 
 U. Wisconsin 129 (34) 465 394 129 
 U. Wisconsin  343 259  
 Bennett, ASAE 168 (45) 278 396  7.4 
 Carcich et al 121 (32) 330 310 81 7.8 
 Comm. on Rural Water 220 (58) 207 165 
 Schmidt 151 (40) 400  
 Bounds, 1982-Grinders 189 (50) 304 226 42 6.9 
 Metcalf and Eddy, 3rd. Ed. 189 (50) 392 436 70 7.2 
 Ziebell, 1974   343 259    
 Average 179 (47) 371 338 73   
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The values shown in Table 2 are averages for non-screened wastewater passing from the tank (effluent).  Also 
shown in Table 2 are average strengths for single and multiple compartment tanks. 
 
 Table 2:  Characteristics of Septic Tank Effluent (unfiltered)  
 Source Flow BOD5 TSS Grease pH 
 (compartments)  L(gal)/capita/day mg/l mg/l mg/l   
 Kreissl 242 (64) 218 114  
 Lawrence-Home 1 117 (31) 224 130 26 7.5  
 Lawrence-Home 2 185 (49) 124 70 8.5 7.2 
 Otis et al  125 60 
 Otis et al  130 40 
 U. Wisconsin  158 51  
 Bennett, ASAE  134 
 Schmidt-(two) 151 (40) 90   7.1 
 Bounds, 1982-STEP-(one) 189 (50) 118 52 16 6.9 
 PHS 2nd Series  178 111  7.4 
 PHS 3rd Series  92 112 19 7.5 
 PHS 4th Series  151 128  7.5 
 Barshied  223 39  7.1 
 Ronayne, 1982-(two) 208 (55) 217 146  
 USEPA 1980 On-Site 167 (44) 155 88 
 Ziebell, 1974  158 51 
 Eastsound, WA, Bounds 1996  214 117  
 Loon Lake, WA, Bounds 1996  90 45  
 Cagle, 1993, Placer, CA-(two)  160 73    
 Average 180 (48) 156 84 17   
 
The values shown in Table 3 are averages for effluent passing from the tanks equipped with screened vault 
dosing assemblies.  The data shown are from community effluent collection systems, nearly all of which have 
restaurants, schools and other commercial establishments in addition to residential connections. 
 
 
 Table 3:  Characteristics of Screened STEP and STEG Effluent  
 Source Installed EDUsa Flow  BOD5 TSS  

   L(gal)/capita/day mg/l mg/l  
 Gala Manor, CA 1991 100  200 22 
 Penn Valley, CA 1989 376 144 (38) 129 28 
 West Point, CA 1986 165 265 (70) 136 32  
 Ball, OR 1992 1 246 (65) 125 28 
 Brooks, OR 1991 318  111 37 
 Elkton, OR 1989 135 159 (42) 136 32 
 Irrigon, OR 1989 446 314 (83) 93 35 
 Lapine, OR 1988 205  103   
 Tangent, OR 1987 230  110 27 
 Boston Harbor, WA 1989 182  164 34 
 Camas, WA 1989 1070  108 35 
 Montesano, WA 1989 1500  160 30 
 South Prairie, WA 1992 136  210 37 
 Stuth (Aqua Test), WA 1992 1  70 15  
 Average   226 (60) 133 30  
a.  Number of Equivalent Dwelling Unit based on the flow from an average single family dwelling with 3 occupants           

(150 gpd/EDU).   
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The values shown in Table 4 are averages of various other septic tank effluent characteristics taken from the 
Glide, Oregon, Pressure Sewer Wastewater Characteristics report (Bounds 1982). 
 
 Table 4:  Septic Tank Effluent Characteristic from Glide, OR  
 Characteristic Range Mean 
   

 Alkalinity, mg/l 200-335 246 
 TSS, mg/l 17-130 52 
 VSS, mg/l 13-114 40 
 Grease, mg/l 6-59 16 
 pH  6.4-7.3 7.2 
 Temperatures, °C 10-23  16.1 
 SO4, mg/l 31-74 43 
 Na, mg/l 59-99 79  
 Mg , mg/l 4.7-26 15.4  
 Ca, mg/l 3-13 8 
 Ortho/Poly PO4, mg/l 8.8-15 12 
 PO4, mg/l 9.5-12 11 
 TKN-N, mg/l 40-58 50 
  NH3-N, mg/l 10.5-48 31.5  

 
The difference between the average values of Tables 1 and 2 shows that 58 percent reduction in BOD5, 75 
percent reduction in TSS and 77 percent reduction in oil and grease occurs as the wastewater passes through 
the tanks. 
 
The difference between the average values of Tables 1 and 3 are an indication that a 64 percent reduction in 
BOD5 and 91 percent reduction in TSS occurs with the addition of filtering devices.  The addition of effluent 
filters significantly reduced the TSS in wastewater passing through the tanks.  This reduction accomplished by a 
configuration designed to mitigate solids floated by gas ebullition and to retain coarse solids.  Filters should be 
sized and configured so that cleaning is required no more often than every five to ten years. 
 
Good segregation and digestion is expected to reduce the total suspended solids by 80 to 90 percent and the 
biochemical oxygen demand by 60 to 70 percent.  The organic (volatile) solids in the influent may vary from 40 
to 70 percent; the mineral or inorganic (fixed) solids content, therefore, may range from 30 and 60 percent of 
the total solids.  If solids discharged into tanks are well managed, the inorganic concentration will be reduced 
considerably. Depending on how well educated the users become regarding proper disposal practices and 
general care of their system, the digestible solid concentration could reach 80 percent. 
 
Septic tank flora is very complex.  For performance to be better understood and optimized, more in-depth and 
thorough research is necessary. 
 
Septic Tank Design 
 
Defining the Tank 
Illustrated in figure 2 is a concrete septic tank typical of the type used in onsite disposal systems and in effluent 
sewers.  The designation, 3785 L (1000 gal) to 5678 L (1500 gal), is nominal and refers to the volume 
normally occupied by the tank’s contents, not including the reserve space.  Total volume is usually 15 to 20 
percent greater.  
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Figure 2:  Typical 3785 L (1000 gal) concrete dosing septic tank 
 
Tanks that are properly sized and constructed provide highly efficient treatment capable of yielding effluent that 
is relatively free of fats, oils, greases, solids and other constituents that can clog and foul collection and disposal 
equipment.  Proper sizing is required to ensure adequate volume is available for development of the necessary 
microbial environments.  Also vital to performance are the tank’s structural-soundness and watertightness.  
These ingredients are essential to the success of every system (no exceptions) and should be strictly enforced in 
all applications, not just within management district boundaries.  Methods are presented here to enable 
designers, regulators, and operations personnel to size tanks relative to occupancy loading, to achieve adequate 
hydraulic retention times for settlement of solids, to determine a tank’s optimum effluent withdrawal level, and to 
predict septage pumping intervals. 
 
Wastewater flows for single-family dwellings typically range from 151 to 227 litres per capita per day (Lpcd) 
(40 to 60 gallons per capita per day (gpcd)); 189 Lpcd (50 gpcd) is a commonly-used design parameter and 
is the value used in calculations herein.  The number of individuals (capita) is assumed to average three per 
dwelling. 
 
To ensure sufficient capacity each tank must meet these requirements: 
  

1) Provide reserve space adequate for 24 to 48 hours of normal use, in case of malfunction, before repairs 
must be made.  The reserve space (Vr) is that portion of the tank from the soffit to the top of the scum 
layer when the liquid level is at the alarm stage.  The reserve storage capacity is normally the product of the 
number of occupants and the average daily flow per occupant—757 L (200 gal) is usually sufficient for 
most three and four bedroom homes.  The reserve space also allows for adequate ventilation back through 
the inlet plumbing. 
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2) Provide an operating zone sufficient to modulate or surge peak inflows without causing nuisance alarms or 
excessive hydraulic gradients.  The operating zone (Voa) is that portion of the tank between the “off” level 
and the “high-water alarm” level.  Keeping this zone small has the advantage of maximizing sludge and 
scum storage volume and minimizing disturbance of the scum layer during pumping cycles.  Dosing septic 
tanks may operate at a lower liquid level than tanks that discharge by gravity.  If a system malfunction 
occurs, the resident(s) should be able to continue to use water for at least twenty-four hours, at their 
average daily flow, before depleting the reserve space.  The need for emergency maintenance is minimal. 

 
3) Provide a clear zone with sufficient hydraulic retention time for capturing grease, grit and other 

substances that settle or float.  The clear zone (Vcz) lies between the scum and sludge layers.  Dunbar 
(1908), Laak (1980) and Winneberger (1977) suggest minimum retention times from 6 to 24 hours for 
adequate suspended solids removal.  Residential hydraulic retention based on average daily flows are 
usually adequate.  The critical hydraulic retention time is determined just as the sludge and scum layers 
approach their minimum respective clear space limits.  When a tank’s hydraulic retention time is sufficient 
for settlement, the clear zone contains liquid waste fairly free of solids. 

 
4) Provide sufficient storage capacity for sludge and scum so that septage pumping is infrequent.  The scum 

layer (Vsc) is that portion of the septic tank’s contents which floats.  One-quarter of this layer is expected 
to float above the liquid level; three-quarters is submerged.  Scum clear space (A) is the distance between 
the bottom of the scum layer at the pump’s “off” level and the outlet (top of the discharge ports) of the 
septic tank.  This distance should be a minimum of three inches.  The sludge layer (Vsl) is the 
accumulation of solids that settle on the bottom of the tank.  Sludge clear space (B) is the distance 
between the top surface of the sludge and the outlet (bottom of the discharge ports) of the septic tank.  For 
tanks having surface area of 2.5 m2 (27 square feet) or more, this distance “B” should be a minimum of 
six inches.  The following equation may be used to estimate the required sludge clear space for tanks with 
less than 2.5 m2 (27 square feet) of surface area (Wiebel et al., 1955). 

 
 SCS (B)   =   2.66 - 0.08Asl (1) 
 
 where: SCS is the sludge clear space (B), in feet. 
 Asl  is the sludge surface area, in square feet. 

  
Solids Accumulation Rates 
Predicting scum and sludge accumulations in order to determine septage pumping intervals is possible using data 
collected in various studies of septic tanks.  The study most commonly cited is by Weibel, Bendixen and Coulter 
for the U.S. Public Health Service (1955), and its rate of accumulation has been corroborated by Winneberger 
(1977), and Bounds (1988).  Sludge and scum accumulation rates, established with a high level of confidence 
(usually 95 percent), are used to estimate the frequency of septage removal, see figure 3.  (The statistical 
confidence level indicates that 95 out of 100 tanks do not  
require pumping before the intervals shown.)  These curves represent the gallons per person that have 
accumulated at any given time in years, so they can be used to project pumping intervals for any occupancy and 
size or shape tank, including compartmented tanks. 
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Figure 3:  Rates of Septage (sludge/scum) accumulation 
  (95 percent level of confidence) 

 
 
Garbage Disposals 
The 1980 EPA Onsite Wastewater Treatment and Disposal Systems Design Manual reports the use of kitchen 
garbage disposals increases both floatable and settleable solids accumulation in tanks; a U.S.PHS study (Weibel 
et al. 1955) quantified the increase in sludge and scum accumulation rates at about 37 percent.  A study of the 
systems in Glide, Oregon (Bounds 1988) gave similar results: use of garbage disposals accelerated the scum 
accumulation by approximately 34 percent, yet made little difference, an increase of only 2 percent, in the rate 
of sludge accumulation. 
 
Septic Tank Capacities 
 
Effects of Occupancy, Loading and Tank Size  
The total volume of the tank in Figure 2 is expressed as the sum of the volumes of the individual zones: 
 
 Vt  = Vr  + Voa  + Vcz  + Vsc + Vsl (2) 
 
 where: Vt  = Total Volume, in L or gal 
 Vr  = Reserve Volume, in L or gal 
 Voa  = Volume between off and alarm levels, in L or gal 
 Vcz  = Volume of clear zone between scum and sludge layers, in L or gal 
 Vsc  = Scum Volume = Rate of Accumulation (Rsc ) x capita, in L or gal 
 Vsl  = Sludge Volume = Rate of Accumulation (Rsl)  x capita, in L or gal 
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The length of time between tank cleanings—the septage pumping interval—may be estimated by substituting all 
the known values into Equation (2) for total volume (Vt): 
A typical interval range is illustrated in Figure 4. Given an average wastewater flow of 189 Lpcd (50 gpcd), 
scum clear space = 7.6 cm (3 in.), sludge clear space = 15.2 cm (6 in.), operating space (liquid level off to 
alarm) = 14 cm (5.5 in.), and a reserve storage time = 24 hours, a single family residential tank, for four (4) or 
fewer occupants, should be 3785 L (1000 gal) to 5678 L (1500 gal) for 5 to 7 occupants.  The curves in 
Figure 4 result from the following nonlinear relationship developed for total sludge and  
scum accumulation shown in Figure 3, (Sludge & Scum)Bounds, 95% : 
 

   Nsl+sc = 47 t 0.675 (3) 
  
 where: Nsl+sc  is the volume of sludge and scum, in gallons/capita 

  t is the time in years 
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Figure 4:  Pump-Out Intervals at 95% level of Confidence 
 
The pump-out interval must be within a range that is affordable and provides adequate long-term solids retention 
for ensuring thorough digestion.  Intervals that are too short not only retard digestion, but force users to pay 
significantly more for service and pumping.  Philip et al. (1993) determined it takes about three (3) years to 
establish sufficient volatile organic acid concentrations for the methane formers.  The initial additional cost for a 
larger prefabricated tank is usually insignificant, especially when compared to the present worth value of long-
term maintenance.   
 
Optimum Effluent Withdrawal Level 
The product of the total septage accumulation, as expressed in Equation (3), and the occupancy load may be 
substituted into Equation (2), for the volumes of sludge (Vsl) and scum (Vsc), to determine the value of “t” in 
years.  Hence, the depth of sludge and the value of “x” in Figure 2 (the depth from the floor up to the center 
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of the discharge ports or bottom of tee) may be determined.  The depth of the discharge ports, for most tank 
configurations, is usually found to center at about 70 percent of the  
lowest operating liquid level.  This is consistent with the requirement adopted by many governing jurisdictions 
that the withdrawal elevation “x” be at 65 to 75 percent of the lowest operating liquid depth.  This method may 
be used to establish, for any given tank, the appropriate elevation from which the clear effluent should be 
withdrawn. 
 
Tank Construction 
 
Configurations 
Septic tanks are constructed with an inlet and an outlet, with accesses for periodic removal of digested solids, 
and with one or more compartments.  They are available in many sizes and configurations. See Figures 5, 6, 7, 
and 8.  For residential applications, tanks are usually 3785 L (1000 gal) or 5678 L (1500 gal) but may be 
larger for homes with higher occupancy. 
 

  
Figure 5:  Typical Gravity Septic Tank Figure 6:  Typical Dosing Septic Tank 
 (Single Compartment) (Single Compartment) 
 
Inlets 
The inlet tee performs several essential functions.  It directs the inflow into the mid-depth of the liquid level, 
which enhances the retention and accumulation of floating materials by ensuring the scum layer is not mixed or 
disturbed by the inrushing flow.  The change in direction of the flow dissipates its incoming velocity reducing the 
mixing action as the influent rushes in the tank; the settleable solids retention is improved by starting the settling 
at the clear zone level, nearer the bottom and sludge layer, rather than at the surface. It also provides a path for 
digested gases to be drafted through the building sewer and house vent.  Without a proper inlet fixture, the 
effluent quality degrades with more solids, fats, oils, greases, soaps etc., washing through. 
 
Shape  
Properly configuring the dimensions and general shape of the tank is important to its performance.  For instance 
square tanks, or tanks with short distances between inlets and outlets, tend to short circuit.  Short circuiting 
results in a degradation of effluent quality.  The travel path from the inlet to the outlet fitting should be 
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longer than the width or depth.  Tanks that are too long and narrow, however, may be awkward to transport 
or difficult to pump clean.  Typical precast length to liquid depth ratios (L:D)  
range from 1:1 to 3:1 (1 1/2:1 to 2 1/2:1 are the most common).  A typical height to width ratio (H:W) is 1:1.  
The reserve-storage/vent volume between the liquid surface and the soffit of the tank may range from 10 to 20 
percent of the tanks total volume (determined minimum volume based on average daily water usage, type 
of service and service response time).  Liquid depths may range from 76.2 cm (30 in.) to 213 cm (84 in.); 
minimum and maximum depth criteria vary with local regulations.  Tank dimensions have not been established 
based on empirical performance data, but rather on established practices and available products.  General 
observations, though, suggest that tanks with a long travel distance between the inlet and outlet perform better. 
 

 
Figure 7:  Typical Gravity Septic Tank Figure 8:  Typical Dosing Septic Tank 
 (Two Compartment) (Two Compartment)  
 
Compartmentation 
Over the years there has been continuing controversy over single-compartment versus two-compartment tanks.  
Evidence of significant benefits to effluent quality that would support compartmentation of tanks, as they are 
presently constructed, is inconclusive.  The Public Health Service concluded its study by stating, “It cannot be 
stated conclusively that there was any significant difference in the operation of the one- and the two-
compartment tanks.” 
 
Winneberger (1984) explains the effect that velocities and turbulence have on the migration path of particles 
traveling through septic tanks and concludes, like Seabloom (1982), that slow velocities through long tanks yield 
the highest effluent quality.  Winneberger makes two generalizations.  First, “the geometric shape of a tank, as 
such, seems not to be critical.  It is the management of flow-through that is of concern” and, second, “the size of 
that second chamber matters little.”  However, the duration of these studies is insufficient for long-term 
predictions.  Also, the studies have not adequately addressed how effluent quality is affected as sludge and scum 
accumulate in the primary compartment.  An observation common to all the reports is that, as the hydraulic 
retention time increases, performance improves (i.e., larger compartments or tanks yield better quality effluents). 
 
Regardless of the number, size or shape of supplemental compartments the primary or first compartment’s 
capacity should be designed based on hydraulic loading, velocity through the tank, reserve capacity, solids 
storage capacity and hydraulic retention time.  Too little primary capacity can lead to excessive pump-out 
frequencies—a costly disaster for the community or individual that has to  
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deal with the mess and pay for the corrective measures.  The difference in cost between a 5768 L (1500 gal) 
single compartment tank and a smaller 3785 L (1000 gal) two compartment tank is negligible.  A larger such 
tank reduces pumping occurrences by a factor of four or more when servicing a family of three.  Ultimately there 
will be less organic matter to dispose due to more complete digestion.  Excessive hydraulic loads on holiday 
weekends or wash days will have less effect on the surge capacity of the larger tank.  The money saved on 
unnecessary or less frequent pumping could wisely be spent on servicing and monitoring. 
 
Municipal size cast-in-place tanks are frequently divided longitudinally into multiple parallel chambers to improve 
solids retention by increasing the flow travel distance.  Winneberger (1984) refers to these configurations as 
meander tanks.  He suggests, that the width of successive chambers could be narrower depending on the 
velocity and expected solids accumulation.  Figure 9 illustrates a precast partition tank constructed by 
Willamette Graystone of Eugene, Oregon (Bounds 1996).  Partitioning has the added advantage of substantially 
improving the tank’s structural strength. 

Inlet

Effluent Discharge

 
Figure 9:  Partition Tank Configuration with Removable Scum Baffle 

 
Methods of Discharge 
Properly sized and designed tanks result in relatively clear effluent that may be discharged either by gravity or 
with siphons or pumps. 
 
Gravity outlet assemblies have, in the past, been the cause of many septic system failures.  Whether poorly 
constructed or poorly installed, many of the early style concrete fixtures or attached baffles would deteriorate 
and/or fall off allowing the scum layer to pass out of the tank.  Greases, oils, fats and bulking solids would clog 
the system, necessitating costly repairs to the drainfield.  Discharge technologies and tank standards have made 
tremendous advancements, so this is much less of a concern in current tank designs. 
 
When discharged from screened assemblies, effluent may be conveyed through small diameter service lines (1 
inch or 11/4 inches in diameter) to its final destination. 
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Watertightness 
Our greatest effort as an industry must be to get properly sized, structurally adequate and watertight tanks 
to all installations to ensure to quality and consistency of the discharge.  The preponderance of septic tanks sold 
in the U.S. are structurally unsound and almost never watertight.  Leaky tanks are unacceptable and 
watertightness is a requirement that should be mandatory for all onsite applications.  Although most regulatory 
authorities require watertightness, enforcement is almost nonexistent.  Testing criteria need to be established for 
gauging and enforcing quality. 
 
Explicit details and specifications are necessary to ensure quality tank construction.  Even so, unless strict quality 
control is uniformly enforced, manufacturers of quality tanks will find it hard to compete with those who make 
inferior tanks and sell them cheaply.  The extra cost of a high quality tank is insignificant when compared to the 
cost of maintaining or replacing a system with inadequate tanks. 
 
Where ground water levels are high, leaky tanks allow infiltration that causes solids and greases to wash through 
the tank, lowering treatment efficiency and leading to the eventual failure of onsite disposal systems.  
Infiltration/inflow (I/I) in effluent sewers overload both collection and treatment capacities.  Hydraulic 
overloading, due to building sewer or tank leakage, causes degradation in the tank’s effluent quality.  Settleable 
and floatable solids, grease and oils are flushed from their storage zones.  Hydraulically overloaded main lines 
restrict the user population of the system.  Energy cost to convey this unnecessary contribution of water 
increases.  Watertight systems allow more cost effective treatment and collection system designs.  Ultimate 
population design potentials are not jeopardized by excessive hydraulic and organic stresses on treatment.  
 
In 1985, the city of Montesano, Washington, was directed by the Washington Department of Ecology to 
correct the I/I problems in its municipal system.  They had been considering a forty-acre lagoon system to 
handle I/I flows reported to be as much as 30 times normal dry weather flows.  Instead, Montesano became the 
first community in history to convert from a gravity sewer to an effluent sewer.  Currently there are 1230 
connections serving an equivalent flow of about 1600 dwelling units.  Residential tanks are fiberglass of 3785 L 
(1000 gal) capacity.  Eighteen months following construction, engineers completed a year long study concluding 
that over 99 percent of the I/I had been removed.  Final treatment is accomplished in a three-cell lagoon located 
on three acres. 
 
Where high groundwater is not a problem, a leaky tank will exfiltrate, lowering the scum layer to the outlet level 
where the floatable solids, fats, soaps, oils and greases can be dosed or washed through the outlet assembly.  
Effluent that leaks directly into groundwater from a leaky tank contributes to groundwater contamination.  
Exfiltration hinders segregation and biological activity and proper development of a clear zone.  Effluent quality 
degrades, organic digestion diminishes and service frequencies increase.  Eventually, system failure ensues 
and/or maintenance becomes excessive and costly.  It follows, then, that for wastewater systems with septic 
tanks to be efficient and reliable, and for predictions of solids accumulations and pumping intervals to have 
validity and continuity, septic tanks must be watertight. 
 
The success of onsite and effluent sewer technologies is directly dependent on the quality of the design and 
construction of the tank. 
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Materials and Quality of Construction 
The material most commonly used in the fabrication of septic tanks is reinforced concrete; fiberglass, 
polyethylene, and steel tanks are also options.  Old-fashioned septic tanks, constructed without benefit of 
adequate design standards, quality control and with little or no reinforcing, are now outmoded.  Designers 
demand and progressive manufacturers are now able to supply sophisticated constructions that are engineered 
to be structurally sound and watertight.  Leaky tanks, which commonly turn many traditional onsite systems into 
nothing better than cesspools, are no longer acceptable. 
 
Reinforced concrete is usually the material of choice based on its cost-effectiveness, structural integrity, 
corrosion resistance, watertightness, buoyancy resistance, site suitability and installation ease.  Fiberglass has 
many of the same qualities and may be preferred because of its light weight where site accessibility for heavy 
equipment is limited or restricted.  Where permanent or temporary high ground waters exist, however, fiberglass 
tanks must be installed so that they resist buoyancy.  Steel tank with thick corrosion resistive coatings and 
cathodic protection are used with success in some areas.  The slightest damage to the protective coating, 
however, may expose the steel and severely shorten the tank’s life, which is normally about 20 years.  
Polyethylene’s strength is intrinsically less, so poly tank installations are typically restricted to unsaturated sites 
with reduced structural requirements.  Poly tanks require additional bedding and backfilling efforts, and in some 
locations may require a low-strength concrete backfill.  
 
Design Guidelines 
Following are guidelines for quality tanks for standard locations.  In areas where burial depth must be more than 
four feet or where heavy traffic or other loading is expected, additional support may be necessary. 
 
General Design Criteria 

a. Top = 500 psf   (The tank shall be capable of supporting long-term unsaturated soil loading in 
addition to the lateral hydrostatic load.) 

b. Lateral Load = 62.4 pcf   (The tank shall be capable of withstanding long-term hydrostatic 
loading with the water table maintained at ground surface.) 

c. Concentrated Wheel Load = 2500 lb.  (The tank and accesses shall be capable of supporting 
short-term wheel load in addition to the unsaturated soil loading.) 

d. Soil Bearing = 1000 psf  (Soil bearing is site specific and must reflect the worst case conditions.) 
e. Cold weather installations requiring deep burial need special consideration. 
f. All tanks shall successfully withstand an above ground static hydraulic test. 
g. The inlet plumbing shall penetrate at least 30.5 cm (12 in.) into the liquid from the inlet flow line.  If the 

submerged scum depth is expected to be greater than 30.5 cm (12 in.), the inlet fixture should be 
extended into the liquid two inches below the expected lowest scum depth.  

 
General Specifications  

a. Manufacturer’s Guarantee shall be for a period of two years. 
b. All tanks shall be installed in strict accordance with the manufacturer’s instructions. 
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Concrete tanks 
The walls, bottom and top of reinforced-concrete tanks are usually designed spanning the shortest dimension 
using one-way slab analysis.  Stresses in each face of monolithically-constructed tanks are determined by 
analyzing the tank’s cross-section as a continuous fixed frame. 

 
The walls and bottom slab should be required to be poured monolithically.  When a tank is expected to be 
submerged, subjected to heavy traffic loads, or buried deeply, the top slab must be cast onto the walls with wall 
reinforcement extending into the top slab.  

 
The bottom thickness of the wall should be equal to the thickness of the floor, which is usually thicker.  At the 
wall-floor joint the stress is equally shared; therefore, steel spacing is more efficient and cost effective if the wall 
thickness is equal to the thickness of the floor.  The wall can taper to three inches at the top.  Tapering the 
interior mold at the bottom improves the flowability of the concrete around the walls and into the floor.  
Chamfering the wall-floor junction on the inside reduces the effect of suction between the tank-mold and 
concrete surfaces; thus the integrity of the concrete at the joint is better maintained and less effort is needed to 
remove the interior mold. 
 
Casting the top in place will produce a much stronger tank than will setting the top in place.  A cast on lid, with 
wall reinforcement adequately tied to the top reinforcement, improves the structural capacity of the top and 
bottom by more than 40 percent and the walls by about 25 percent.  The required rebar spacing will be wider, 
which reduces materials cost and labor in fabrication.  With the wall and top joint cast together there is greater 
assurance that if differential settlement occurs the top will not separate from the wall causing loss of lateral 
support at the top.  Separation of the top lid from the wall would significantly reduce the tank’s strength and its 
watertightness would be lost.  Set in place lids must be mechanically attached to the walls to assure the joint 
does not separate when the tank shifts or settles. 

  
Concrete Specifications  
Concrete must achieve a minimum compressive strength of 4,000 psi in 28 days.  The design of the concrete 
mix depends on the gradation of the aggregate and should be determined by a professional engineer.  A 
common 4000 psi ready-mix design has a cement content of six and one half (61/2) sacks per cubic yard and 
maximum aggregate size of 19 mm (3/4 in.)  (Ready-mix cement conforming to ASTM C-150, Type II.) 
 
Water/Cement Ratio. To ensure proper curing and ultimate strength, it’s important to keep the water/cement 
ratio low, 0.35 ±.   
 
Air-entraining agents may be required depending on the mix design, although they are not usually necessary 
for small concrete tanks.  Air-entrainment without additives is usually 1 to 2 %. 
 
Fiber Additives may be used to enhance watertightness by controlling concrete shrinkage.  
 
Protective Coatings. Heavy cement-based sealants may be used inside and out.  The manufacturer’s 
directions must be followed exactly.  Bituminous coatings are not necessary.  In Pomeroy’s work for the 
EPA, published as 1974 Sulfide Control In Sanitary Sewerage Systems, he recognized that bituminous 
coatings were not effective in reducing sulfide corrosion. Winneberger discusses the fact that the  
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atmosphere in a well vented septic tank is not greatly different from the atmosphere above grade.  Hydrogen 
sulfide concentrations were lower than what could be measured by wet chemistry techniques.  Methane was 
also non-detectable.  Only the oxygen concentration was a bit below that of the outside atmosphere. 
 
Reinforcing Steel shall be Grade 60, fy = 60,000 psi (ASTM A-615 Grade 60).  Size and placement must be 
determined by a structural engineer.  Wire fabric is not acceptable.  Weldable steel may be specified if the 
reinforcing cage is to be tack welded during assembly.  Misalignment of reinforcement in a three inch thick 
section can significantly reduce the strength of the tank; for instance, a quarter inch of misalignment will reduce 
the capacity of that section by about thirty percent, one-half inch of misalignment will reduce the capacity by fifty 
percent. 
 
Form Release must be Nox-Crete or equal.  Diesel or other petroleum products are not acceptable. 
 
Vibration. Tank molds must have attached vibrators to ensure adequate flow of concrete down the walls and 
across the bottom.  Excess vibration can cause the aggregate to segregate.    
 
Curing.  Proper curing techniques are necessary to ensure watertight tanks.  Tanks must not be moved until 
they have cured for seven (7) days or have reached two-thirds of the design strength. 
 
Test Cylinders must be taken from each batch of concrete and tested until the minimum compression strength 
has been obtained. 
 
Fiberglass Tanks 
Glass fiber and resin content must comply with IAPMO IGC 3-74, and there should be no exposed glass 
fibers. 
 
Metal parts must be 300 series stainless steel.   
 
Wall thickness must average at least 6.3 mm  (1/4 in.) with no wall thickness less than 4.8 mm (3/16 in.)  No 
delamination is allowable. 
 
Holes specified in the tank must be protected with an application of resin on all cut or ground edges sufficient so 
that no glass fibers are exposed and all voids are filled. 
 
Neoprene gaskets, or an approved equal, must be used at the inlet to join the tank wall and the ABS inlet 
piping.  ABS Schedule 40 pipe and fittings must be used at the inlets. 
 
Testing 
Follow these test procedures to ensure watertightness.  Test every tank at the factory and again after installation: 

 
1) Fill the tank to its brim with water and let it stand for 24 hours.  To help expedite larger orders a vacuum 

test may be substituted at the factory, and after the tanks are delivered to the job site.  A vacuum test 
may not, however, take the place of the final installed static water test. 

2) Measure the water loss; if there is no water loss during the first 24 hours the tank is acceptable for 
installation.  Some water absorption, however, may occur during this first time period.   If so, refill the 
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tank and determine any exfiltration by measuring the water loss over the next two (2) hours.  Any water 
loss is cause for rejection. 

3) Install the tank and repeat steps 1 and 2.  These procedures should be followed after setting and after 
backfilling.  Test the seal between the riser and the tank top for watertightness by filling the riser with 
water to a level  2" above the top brim of the tank.  Caution: To prevent hydrostatic uplift damage to 
the top joint of the tank, do not allow the level of water in the riser to exceed the level of the 
backfill.   
  

Buoyancy 
Improper septage pumping of a buried tank may result in the tank suddenly  “floating” to the surface, causing 
damage to piping, landscaping or worse, injuring maintenance personnel.  The following precautions help to 
ensure tank submergence in areas with high groundwater: 

 
• Require a minimum cover where high groundwater conditions are suspected (evaluation must be 

provided after identifying site specific soil conditions). 
• After setting the tank, pour an additional 15.25 cm (6 in.) of concrete over the top; extend a minimum of 

30.5 cm (12 in.) beyond the sides of the tank.  Lightweight plastic tanks (� 400 lbs) require concrete or 
other counter measures sufficient to exceed the buoyant force. 

• The weight of concrete tanks can be increased by adding thickness to the walls, top and/or bottom. 
• Operation and maintenance instructions should clearly state that tanks must never have more than half 

(50%) of their contents pumped out during periods when the groundwater is high; especially if they are 
located in sandy soil. This recommendation is for cautionary purposes only, and is not a substitute for 
physical buoyancy restraints. 

 
Monitoring 
Even under ideal conditions, estimates of septage pumping intervals are useful in predicting the amount of 
maintenance required by a population of tanks, not in determining when an individual tank needs to be pumped.  
The only way to know when a tank needs to be pumped is through direct measurement of the scum and sludge 
thickness. The monitoring experience from Glide showed that after five years, considerably less than half of most 
tanks’ scum and sludge capacity had been reached (Bounds, 1988).  Onsite design manuals may encourage 
frequent pump-outs as a precautionary measure when an inspection program is not in effect, however, longer 
intervals are usually justified, particularly if an effluent screening device is in place. 
 
Conclusion 
In summary, structurally adequate and watertight septic tank systems are no longer considered a temporary 
stopgap until such time as a “real” sewer can be built.  As technology has improved the image of the septic tank, 
it has come to be appreciated as a component of an efficient and permanent solution.  As such, it deserves to 
be accorded the same scientific consideration as other treatment systems.  Structural designs and quality 
assurance should be based on the same long-term and physical loading criteria required of all submerged 
wastewater treatment vessels.  Adequate sizing procedures and designs for watertight tanks are available.  
Sizing must be based not only on occupancy, but on biological, hydraulic and chemical loading conditions.  
Predicting reasonable septic tank pumping intervals with a  
respectable degree of reliability is an achievable goal.  Suggestions or requirements that all septic tanks must be 
pumped every two, three or even five years are simply unsupported by scientific evidence.  The microbial 
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activity that affects optimal decomposition takes up to three years to develop fully (Philip et al. 1993).   When a 
management program is in place, pump-outs are scheduled based on inspections and monitoring records so that 
costs are controlled. 
 
Current septic tank technologies are capable of treating wastewater (onsite) to a higher level of quality than do 
the vast majority of municipal treatment plants.  Properly designed, these onsite technologies are more fail safe 
and fail soft than municipal facilities.    
 
Effluent sewer and onsite wastewater technologies have been established as an affordable and reliable 
alternative.  Passive—energy free—septic tanks provide the most cost efficient method of primary treatment 
available for nonindustrial sewage. 
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